PDA

View Full Version : Alex Klitzke" Ancient Knowledge I - Measure of God and Apocrypha"



Delight
6th October 2013, 18:10
The internet makes me very grateful. I find so many wonders and information and it reminds me of a verse I also love:

Finally, brethren, whatsoever things are true, whatsoever things are honest, whatsoever things are just, whatsoever things are pure, whatsoever things are lovely, whatsoever things are of good report; if there be any virtue, and if there be any praise, think on these things.


Pyramids - knowledge holders made ​​of stone (Axel Klitzke)

(google translation from German to English edited)

Foreword by Armin Risi
medeis eisitho ageômetrikos. the motto said to be written above the entrance to Plato's Academy in Athens: "Nobody shall enter that does not know about geometry" .The entrance to Plato's school is also the entrance to the whole of Western philosophy and "Academy". And the key to this is to be the geometry? This may sound surprising at first glance. Why must one be familiar with geometry, if you want to go into the "Academy" in an academic education.

Every man that is called "academics" to be a geômetrikos? Why the great philosopher and scholar Plato demanded that qualification of his students? The Greek word ageômetrikos (literally "non-geômetrikos"), not only as "ignorant of geometry," but also as "unfit for geometry, the geometry averse" to be translated. Plato called for a general qualifications: Someone who wants to be initiated into the higher sciences, should not be unable or geometry geometry-averse. Student candidates had therefore to be willing to learn a clear abstract thinking before work in the concrete world first, and this included primarily the sciences of philosophy and mathematics.

Axel Klitzke provides his work: concrete and tangible issues concerning the ancient pyramids. Axel Klitzke compares the pyramids of Central America and Egypt, in particular, the Teotihuacan, Dahshur and Giza. He discovered striking similarities, based on the Hunab, the royal cubit and the Urzoll whose true length he was able to identify - also a key-like (re) discovery.

This of course attracts many questions: Where do these parallels come from? Who built these megalithic structures? When and for what purpose? One could simply accept the prevailing 'academic' opinion, namely, that we are dealing with the Egyptian pyramids to tombs of the pharaohs of the Fourth Dynasty (Sneferu, Khufu, etc.), 2500 BC. This is not a valid academic knowledge in the Platonic sense, because this view is ageômetrikos.

If Plato's maxim applies to the philosophy, then he is even more true for Egyptology, especially for the pyramid! Only when those whose gaze is trained geometrically, may the pyramids and the builders of the pyramids meet in the science of sacred geometry, not the curriculum of Egyptology. The "academic" Egyptology even claimed in the pyramids there are no sacred geometry, the construction of the pyramids have no overall plan; pharaohs were the pyramids built step by step and experimentally, that during the construction, the design was changed again and again, that the newly won findings (or the whim of the Pharaoh) was adapted.

The builders of the pyramids have nowhere been identified in writing. The megalithic wonders of Egypt are inschriftenlos - in stark contrast to the pharaonic monuments. Conversely, the Pharaohs (Sneferu, Khufu, etc.) do not say anywhere, they built the pyramids of Giza and Dahshur. This assignment goes to the Egyptologists of the 19th Century back, and has now established such that they hardly anyone questioned. And yet it question to this assignment and objectively examined what the evidence shows quickly that the few proofs that are given, are in no way convincing.

Axel Klitzke goes far beyond these basic questions because he is geômetrikos in the strict sense as in the other. As a young man he was, still in GDR times, in the mining industry and has thus made sustainable personal experiences in dealing with rock. He knows what it means to work with stone. Axel Klitzkes education is not built on sand, but on rock. Subsequent university studies and many years of service in the field of planning created a solid basis for his research.

When he examines the construction and architecture of the pyramids, he can do both from the practical and from the theoretical side. Geometry in ancient understanding refers not only to the structure and measurement of the outer world, but also to the knowledge of the internal structure of the cosmos. In this context, the famous Greek universal scholar Pythagoras said: "All is number". He wanted to express that creation is the work of a conscious Creator God, whose cosmic intelligence is expressed in embracing order and harmony which extends from the people.

On the abstract level one can comprehend first thing in the form of numbers and numerical relationships, and the number is the expression of the relationship of unit (origin) and multiplicity (creation). In this sense, Axel Klitzke is geômetrikos also in the broader sense, as he explored alongside the engineering science and the ancient mystery traditions, especially those of the Freemasons.

He had to know that not much is left from the original knowledge, although they in their original form - go back to very ancient roots - through various stations of the ministry hidden away. His research is so very enriching and enlightening for these circuits.

Plato's claim referred obviously not to a one-sided, abstract education but on a universal one, which allowed the students to act, farsighted and complex in the world of concrete forms (architecture, medicine, politics, etc.). Plato is one of the first major scholars of the West. However, a look back into the past should not stop with him, for he himself was in the tradition that goes back to Pythagoras.

Pythagoras traveled far and started his own teaching. Traditions that go back to him, said he had studied for many years in Egyptian mystery schools and was inaugurated there in the highest degree. Following the model of the Pythagorean model Plato founded his school in the year 388 BC. His school (located just outside Athens, in the north-west of the city, named after the hero AKADEMOS, considered protective and patron of Athens, because he kept by his wisdom and prudence this city before a damaging attack) in the groves of AKADEMOS .

Even Plato is said to have traveled to Egypt and was possibly opened there in the ancient Mysteries in the ATON mysteries. Some interpreters interpret even his name in this sense: PL-Aton. One of the most important trends that affected the Western intellectual life, thus came - through Pythagoras, Plato and others - from Egypt and goes back about this stopover on much older sources.

Even the Jewish Kabbalistic tradition has Egyptian roots, as the historical-symbolic story of Moses (an Egyptian name!) Shows: "And Moses was instructed in all the wisdom of the Egyptians, and was mighty in words and deeds." (Acts 7 , 22) Both the schools of Europe and the Middle East resulting in the religions have ancient roots, but are now largely ignored or even denied.

The current world situation shows that these religions and the secular lodges organizations require a profound transformation and light penetration, because only a perspective which goes beyond the earthly and worldly addition to the universal, can resolve today's tensions between nations, religions and other (public and secret) organizations. The decisive factor here is the rediscovery of the common roots that connect all people and cultures.

Since in this book occur not only letters but also numbers that readers are invited also to be geômetrikos, that is open to the secrets of numbers and also open to the secrets of the buildings that have been built from this knowledge. It is precisely in this area what Pythagoras said, is true,without limitation, "All is number". Interestingly, almost sensational here is the discovery that not the people of today's computer age are the keepers of this knowledge, but the oldest cultures the world, of which only a few (anonymous) Buildings have been preserved.

These structures are the expression of a brilliant, complex mind. Cultures of the well-known today, beginning with the ancient Egyptians, could only be admired and adored. The "hot track" of sacred geometry leads, because, and this is clear from the outset: this is to track down the real pyramid farmers and to our forgotten, but not lost past,one directly connected to our futurehttp://armin-risi.ch/Artikel/Aegypten/Pyramiden-Vorwort.html

Ancient Knowledge I - Measure of God and Apocrypha
Published on Jul 30, 2013
German with English subtitles

_NLKY-0HJvc